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RELATIONS BETWEEN FORCES ACTING ON BODIES 
OF DIFFERENT SHAPES MOVING IN A GAS* 

A. V. DUBINSKII 

A method of constructing three-dimensional bodies with identical drag coefficients 

in a streamlined flow under the conditions of the hypothesis of local interaction, 

is investigated. The equality of the characteristics is maintained irrespective of 

the choice of the functions describing the interaction between the flow and thebody 

surface, i.e. on changing the mode of the flow. 

1, The authors of /1,2/ gave a method of computing aerodynamic characteristics of bodies 

in a flow under the conditions of the hypothesis of local interaction, i.e.underthe assump- 

tion that the local force coefficient ct acting from the direction of the flow on the body at 

the given point of its surface, depends only on the local angle between the direction of the 

incoming flow v and the inner normal unit vector n 

C,=51;,(v.o).n+n,(v.n).r, r=[~-n(\,.n)j/I/I-(V.,,)P (1.1) 

where the functions P, and 62, define the actual model of the flow (the parameters characteriz- 

ing the flow around the body can also be used as the arguments). 

The method developed in /1,2/ makes it possible to construct, for the given functions Qp 

and 62,, classes of the corresponding bodies the characteristic features of which are connect- 

ed by linear relationships. The authors discussed plane profiles, solids of revolution and 

some types of the three-dimensional bodies. The distinctive features of the approach adopted 

in the present paper, which extend appreciably its range of application, are as follows:change 

to investigating the three-dimensional bodies, and the refusal to specify a concrete form of 

the functions Q, and sl,. We show that a class of the corresponding solids can be construct- 

ed for a three-dimensional body, characterized by identical drag coefficient in the flow, and 

this equality is preserved when the form of the functions 62, and &is changed, i.e. when the 
mode of the flow is changed within the framework of the hypothesis of local interaction. As 

a result, a possibility arises of computing the characteristics of the corresponding bodies 

using the results of experiments carried out for the parent body, without specifying the models 

of flow. The parent body and the corresponding bodies have, in spite of appreciable variation 
in form, identical drag coefficients (over a wide range of the flow modes), and this widens 

the range of choice of a reasonable form of aircraft. 

2, We write the expression for the body drag in the form 

where S, denotes the characteristic area, cF is the drag coefficient of the body and 'I denotes 

the dynamic head. 

Let us consider two bodies, T(O) and T(I) (here and henceforth the superscripts in round 

brackets denote the number of the body). Let the form of the body $')be defined in Cartesian 

coordinates by the vector I(~)@, p), with (a, si E (Q. Then the expression for the resistance 

force can be written in the form (the _c sign determines the choice of the inner normal to the 

surface) 

(2.2) 

Our aim is to determine the relation between the forms of the surfaces of T(O) and T@)ensuring 
that the ratio of their drags 

F'(l) / F(O) = k (2.3) 

remains the same when the function P is varied. We shall call such bodies the corresponding 

bodies. 
Let us first consider the simplest case when the form of the bodies is such that v(~),II'~)= 

p = const. Then from (2.2) it follows that condition (2.3) holds for these bodies and k= S(‘)iS’“) 

where sci)is the area of the "wettable" surface (where Q#O). 
In the general case the condition (2.3) holds irrespective of the choice of Q, provided 

that the following system of conditions is satisfied: 
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From the first 

which connects the areas of the wettable surfaces of the corresponding bodies. 

3, Let us now pass to the problem of determining the form of the corresponding body P’J 

A. V. Dubinskii 

(2.4) 

(2.5) 

Fig.1 

when the form of T(')is known. We choose a coordinate system (Fig.l), attached to the body in 

such a manner that the directions of the O(')z(i) -axis and of v(i) coincide. The equation z= 

Z&Y) determines the surface of Y'@)(from now on the zero superscript will be omitted). The 

form of the surface of Z"')is described by the parametric equation z(l) = z(') (z, Y), y(l) = Y(‘) (5, y), 

z(1) = 2(l) Is”) (z, y), y(l) (I, y)] . Setting a = I, B= y, we can write the conditions (2.4) in the form 

.+Jk" - ly y, (1) (1) = ,; (3.1) 

-2, d 
. * ;,i t -z ,z(J$ zk:)la)l,W=,tl) (X, !I), u(~)=d%, 1,) (3.2) 
T’o” 0, 0) /: ah. ?I:’ ~I ay(i)/~h. $) = ,W 1 as, 6 = r, !,, ,.(I), ?,(I: 

Let us denote the projection of the body surface described by a single-valued function 

~('1 (I(~), y(')l on the plane z(') = 0 , by (o(");(o(')) also denotes the projection of the middle cross 

section of the body. Then the functions z(l) (1, y), 1, (')(s,~) define the transformation of the 

region (a@)) to (a(')) , and from (3.1) follows 

~(1) _ &fl) (3.3) 

Comparing (2.2), (2.3) and (3.3), we can conclude that the drag coefficients of the cor- 

responding bodies are the same, provided that the area of wettable surface or its projection 

on the plane perpendicular to the direction of flow is chosen as the characteristic area. The 

relations (2.3) and (2.5) can be used to calculate the effective Reynold's number for the 

Fig.2 

corresponding body. 

The process of finding the corresponding body is reduced to the 

following. Let the equation of the surface of $)bounded by the con- 

tour 1'"' be specified; the projection of r(l) on the plane P=O (the 

closed curve,@) encloses the region (&)). The form of the middle 

cross section of the corresponding body I‘(O) is also specified. Then 
if the transformation &) = 2Q) (2, y), yu) = I/(')(~,~), taking (19') into (,+I') 

and (y(O) into y(r)) has been obtained, then the surface of the corres- 

ponding body can be found by solving the equation (3.2); the surface 
should pass across the contour T(O) (Cauchy problem for the first ord- 
er partial differential equations). 

We note that various characteristics (e.g. other components of 
the aerodynamic force) can be used as Fin (2.1), and it can be gen- 
eralized to more general cases of representing F. 

4, As an example, we shall consider a class of corresponding 
bodies generated by the transformation 

J(1) -z .~.r, i/u) = BJ,, .4 = u vii, B = vi; / <I 

and assume that the contour rci) surrounding the middle cross section 

of the body Tci) lies in the plane $1 = 0, Such a transformation 
takes, in particular, solids of revolution into the solids with an 

4liptical middle cross section. 
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Let the parent body be formed by rotation of a paraboY_ic arc. 
its surface has the form 

#I = 'Is (J&sy(')2+ ej'- ',?I, +. @)2 

The equation describing 

Then the equation of the surface of T(O) is obtained as a solution of the problem 

zxs -c_ a$ = Aexa + B2y2 
z = 0, 5 = XL? (C)I Y = Ya (t) .4 zq)2 + py,e s 1 

The solution has the following form under the assumption that the body is thin in the direc- 
tion of tbhe @J-axis -- 

The form of the bodies with tie same drag is shown in Fig.2 [k= 1, B = 0.5, Cl = 2.51. AlI lin- 
ear dimensions are referred to some characteristic length. Solid lines refer to the body T(O) 
and dashed line to T'l' . The CUXV~S show the form of the cross sections of the surface of the 
body intersected by the plane $1~ -_d perpendicular to the direction of the incident flow 
(38) 2 0 , Y@)ZO) and correspond, in the order of increasing numbers, to the values of d equal 

to 0,i and 2. It is apparent that the transformation changes substantially the form of the 
body, while maintaining the value of the drag. 

The author thanks A. I. Bunimovich for the attention given and for valuable comments, 
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